Enhancing Hit Identification in *Mycobacterium tuberculosis* Drug Discovery Using Dual-Event Bayesian Models Sean Ekins^{1, 2*}, Robert C. Reynolds^{3,4}, Scott G. Franzblau^{5,}, Baojie Wan⁵, Joel S. Freundlich^{6,7} and Barry A. Bunin¹ ¹Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA. ²Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA. ³Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA. ⁴Current address: University of Alabama at Birmingham, College of Arts and Sciences, Department of Chemistry, 1530 3rd Avenue South, Birmingham, Alabama 35294-1240, USA. ⁵ Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL 60607, USA. ⁶Department of Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ – New Jersey Medical School, 185 South Orange Avenue Newark, NJ 07103, USA. ⁷Department of Pharmacology & Physiology, UMDNJ – New Jersey Medical School, 185 South Orange Avenue Newark, NJ 07103, USA. *To whom correspondence should be addressed. (e-mail: ekinssean@yahoo.com) Running Head: Dual Event Bayesian Models **Table S1.** Mean (SD) leave one out and leave out 50% x 100 cross validation of previously published Bayesian models (ROC =receiver operator characteristic) – data from [22] | Dataset (number of molecules) | Leave
one out
ROC | Leave out 50% x 100 External ROC Score | Leave out 50% x 100Interna | Leave out 50% x 100 I Concordance | Leave out 50% x 100 Specificity | Leave out 50%
x 100
Sensitivity | |---------------------------------|-------------------------|--|----------------------------|-----------------------------------|---------------------------------|---------------------------------------| | MLSMR All single point | | | | | | | | screen | 0.88 | 0.86 (0) | 0.86 (0) | 78.56 (1.86) | 78.59(1.94) | 77.13 (2.26) | | (N = 220,463)
MLSMR | | | | | | | | dose response set
(N = 2273) | 0.78 | 0.73 (0.01) | 0.75 (0.01) | 66.85 (4.06) | 67.21 (7.05) | 65.47 (7.96) |